
The QRZDLL Specification
Contents
About QRZDLL
Licensing Information For Developers
QRZSearch Initiate a Search
QRZGetNext Retrieve Next Match
QRZInit Initialize QRZDLL
QRZExit Release QRZDLL
QRZAdvance Advance N Records
QRZAdvanceTo Advance to a Given Record
QRZBack Backup N Records
QRZGetCount Get the Current Record Count
QRZGetSbPos Get the Current SB Position
QRZCount Get the Match Count
QRZReformat Re-format the Current Record
QRZField Get a Particular Record Field
QRZSetFIlter Set the Callsign Prefix Filter
QRZGetCbInfo Get Database Info Summary

Run the QRZDEMO Program

About QRZDLL
QRZDLL is Copyrighed (c) 1994 by QRZ, and Fred Lloyd, AA7BQ.

QRZDLL was written by Fred Lloyd, AA7BQ, and introduced into the third volume of the QRZ!
Ham Radio CDROM (June 1994). The code was developed to enable the use of higher level GUI
interface development tools, such as Microsofts Visual Basic. QRZDLL itself is written in C and
was compiled with Microsoft C version 7.0.    The DLL can be used along with both C and Visual
Basic applications.    It is likely that it works with Visual C++, but this has not been tested.

If you are using Microsoft's Visual Basic and would like to get started right away, just have a look
at the QRZDEMO.BAS application.    This sample application, which took only about 10 minutes
to write, shows just how easy it is to use QRZDLL.    Be sure and include a copy of the
GLOBAL.BAS file which contains all of the constants and declarations used by QRZDLL.

The goal of QRZDLL is to provide a consistent interface to the callsign database while
maintaining some freedom to change its implementation.    Future versions and enhancements of
QRZDLL will be downward compatible with this specification..

If you have any comments about the spec, and/or suggestions for future enhancements please
feel free to email me at:    aa7bq@qrz.com

73 from Scottsdale,

-fred

Licensing Information

As the owner of this copy of the QRZ! Ham Radio CDROM and as an independent    software
developer, you are hereby granted a royalty-free, unlimited license to redistribute the
QRZDLL.DLL library along with programs that you write provided that for each program that uses
QRZDLL.DLL a message appears in the "About" box on your program's main menu which states:

Portions of this software courtesy of QRZ, Copyright (c) 1994

 QRZSearch

int QRZSearch (Mode, Key1, Key2, Key3, Found, Format)

int Mode /* Search Mode (see below) */
LPSTR Key1 /* Search Key 1 - depends on Mode */
LPSTR Key2 /* Search Key 2 - depends on Mode */
LPSTR Key3 /* Search Key 3 - depends on Mode */
LPSTR Found /* Address of return buffer for result */
int Format /* Return record format type (see below) */

The QRZSearch function is the primary entry to the callsign database.      QRZSearch will
locate the first occurence of a given key sequence and return a result in the buffer pointed to
by Found.    QRZSearch returns the number of bytes written to the Found buffer or 0 if no
record matching the specified key(s) was found.

In addition to returning the data in the buffer Found, QRZDLL maintains a copy of the current
record in memory which can be retrieved one field at a time using QRZField.

Parameter Description
__
Mode Specifies the type of lookup to be performed.    Must be one of:

QRZCALL Do Callsign lookup
QRZNAME Do Name lookup
QRZCITY Do City/State lookup
QRZZIP Do Zip Code lookup
QRZSTREET Do Street/City/State lookup

Key1
Key2
Key3 Depending on Mode, the keys are used for varying purposes:

For QRZCALL, Key1 is the callsign or callsign suffix, Key2 and Key3 are unused.

For QRZNAME, Key1 is the Last name, Key2 is the First name (with an optional space
separated middle initial) and Key3 is unused.    Key2 is optional but if used is
considered wild.    For example, when Key2 = "F", then all first names beginning with
the letter "F" are returned.    Two word first names (such as "John Paul") will fail as the
database attempts to find a John P. Somebody.    A quoting method will be introduced in
a future release.

For QRZCITY, Key1 is the two-letter state code and Key2 is the city name.    Key1 is
mandatory.    Key2 is optional, and may contain a trailing '*' or wildcard. Key3 is unused.

For QRZZIP, Key1 is the zip code to start with and Key2 is the zip code to end with.   
Key1 is mandatory and Key2 is optional.    When only Key1 is specified, only those zip
codes matching Key1 are returned.    Key1 may not be greater than Key2 are equal to
or greater than Key1 up to and including all zip codes which are equal to Key2.    Key3
is not used.

For QRZSTREET, Key1 is the two-letter state code and Key2 is the city name (same
rules as for QRZCITY above).    Key3 contains the substring of the desired street name. 
For each record matching the QRZCITY criteria, a string search is performed on the

street address field, returning any records which contain Key3 in them.    QRZSTREET
is not indexed on the street names and so its performance will be noticably slower.

Found When a match is found, it is formatted according to Fmt and placed into the buffer
pointed to by Found.   

Format The supported format types which are returned in the Found buffer are:

DISP_FMT Display Format (all data)
MAIL_FMT Mailing Label Format (partial data)
BOOK_FMT Callbook Style Format (partial data)
RAW_FMT Raw Format (full data)
DBF_FMT DBF Format - Quote/comma delimited full data

Notes: The Mode parameter selects one of the 4 presorted databases making it the default
database for all other functions in the library (the Street and City/State modes use the
same database).    The system-wide Mode setting can only be changed by another call
to QRZSearch.

Constant Definitions: (as used in Visual Basic)

Const QRZCALL = 1 ' Modes
Const QRZNAME = 2
Const QRZCITY = 3
Const QRZZIP = 4
Const QRZSTREET = 5

Const DISP_FMT = 1 ' Formats
Const MAIL_FMT = 2
Const BOOK_FMT = 3
Const RAW_FMT = 4
Const DBF_FMT = 5

Visual Basic Declaration:

Declare Function QRZSearch Lib "qrzdll.dll" (ByVal Mode as Integer, ByVal Key1 As String, ByVal Key2
As String, ByVal Key3 As String, ByVal Found As String, ByVal Format as Integer) As Integer

C Declaration:

int FAR PASCAL QRZSearch(int mode, LPSTR key1, LPSTR key2, LPSTR key3, LPSTR found, int
format);

 QRZGetNext

int QRZGetNext (Found, Format)

LPSTR Found /* Address of return buffer for result */
int Format /* Return record format type (see QRZSearch) */

The QRZGetNext function retrieves the next logical record matching the key sequence and
Mode specified by a previous call to QRZSearch . The result is returned in the buffer pointed
to by Found.    QRZGetNext returns the number of bytes written to the buffer or 0 if no more
records were found.

The Found and Format parameters are identical to those used by QRZSearch.

Visual Basic Declaration:

Declare Function QRZGetNext Lib "qrzdll.dll" (ByVal Found As String, ByVal Format as Integer) As
Integer

C Declaration:

int FAR PASCAL QRZGetNext(LPSTR Found, int Format);

 QRZInit

int QRZInit (Drive)

LPSTR Drive /* Address of string pointing to CDROM drive */

The QRZInit function is optionally called to initialize the callbook index and to prevent the DLL
from searching for the desired CDROM drive.    If QRZInit is not called, QRZDLL will start
searching from drive C: upward until it finds a x:\callbk\callbkc.dat file.    Using QRZInit merely
shortens the startup time, and directs the program to a particular drive if multiple drives are
available.

QRZinit returns either -1, 0 or a drive letter on success.

Return Values

> 0 Drive letter where database was found
 0 No database was found
-1 QRZDLL Already in use

Visual Basic Declaration:

Declare Function QRZInit Lib "qrzdll.dll" (ByVal Drive As String) As Integer

C Declaration:

int FAR PASCAL QRZInit(LPSTR drive);

See also:QRZExit

 QRZAdvance

int QRZAdvance (Amount, Found, Format)

int Amount /* Number of Records to Advance (seek forward) */
LPSTR Found /* Address of return buffer for result */
int Format /* Return record format type (see QRZSearch) */

The QRZAdvance function moves the current database record pointer forward in an
unqualified manner.    It is chiefly used to randomly browse through the database as might be
done with a scroll bar or arrow button.    The Amount    parameter can be either 1 or 2, in
which case the pointer will advance one record or 100 records, respectively.    To move the
pointer to a more specific location, use the QRZAdvanceToTo function.    The inverse function,
QRZBack, moves the pointer back either 1 or 100 records.   

QRZAdvance returns the number of bytes written to the buffer Found.

Note that the actual pointer movement will be an inexact number of records when
moving at distances of greater than 1 record.    The actual movement is an
approximation based on the size of an average record (currently 84 bytes per record).
Thus, a jump of 100 equals 8,400 bytes forward plus the distance to the start of the
next record.

The Found and Format parameters are identical to those used by QRZSearch.

Visual Basic Declaration:

Declare Function QRZAdvance Lib "qrzdll.dll" (ByVal Amount as Integer, ByVal Found As String, ByVal
Format as Integer) As Integer

C Declaration:

int FAR PASCAL QRZAdvance(int Amount, LPSTR found, int Format);

 QRZAdvanceTo

int QRZAdvanceTo (Position, Found, Format)

int Position /* Position in Selected Datafile (1/1000) */
LPSTR Found /* Address of return buffer for result */
int Format /* Return record format type (see QRZSearch) */

The QRZAdvanceTo function was created specifically support fast random tabbing through
the database at the rate of 1/1000th of the database per jump.    The Position argument
specifies the absolute offset into the selected database file in the range of 0 to 1000.    The
same caviats regarding random pointer positioning as mentioned in QRZAdvance apply.   
QRZAdvanceTo returns the number of bytes written to the buffer Found.

The Found and Format parameters are identical to those used by QRZSearch.

Visual Basic Declaration:

Declare Function QRZAdvanceTo Lib "qrzdll.dll" (ByVal Position as Integer, ByVal Found As String,
ByVal Format as Integer) As Integer

C Declaration:

int FAR PASCAL QRZAdvanceTo (int Amount, LPSTR found, int Format);

 QRZBack

int QRZBack (Amount, Found, Format)

int Amount /* Number of Records to Back up (seek backwards) */
LPSTR Found /* Address of return buffer for result */
int Format /* Return record format type (see QRZSearch) */

The QRZBack function is the logical inverse of the QRZAdvance function.    QRZBack moves the
current database record pointer backward by either 1 or 100 records.    The exact position
may vary due to the approximation used for record size (84 bytes).    For example, to
move back by 1 record, the routine will seek the current pointer back by 300 (84 + 84 +
42) bytes, or two and a half logical records.    It will then seek forward twice, first to the
end of the half record and then to read in the new current record.

The Found and Format parameters are identical to those used by QRZSearch.

Visual Basic Declaration:

Declare Function QRZBack Lib "qrzdll.dll" (ByVal Amount as Integer, ByVal Found As String, ByVal
Format as Integer) As Integer

C Declaration:

int FAR PASCAL QRZBack(int Amount, LPSTR found, int Format);

 QRZGetCount

long QRZGetCount ()

The QRZGetCount function returns the number of records which matched the most recent
Search and/or GetNext / Count activity.      QRZGetCount simply returns an internal variable,
no record positioning or file I/O takes place. The result is returned as a long integer.   

Visual Basic Declaration:

Declare Function QRZGetCount Lib "qrzdll.dll" () As Single

C Declaration:

long FAR PASCAL QRZGetCount();

 QRZGetSbPos

int QRZGetSbPos ()

The QRZGetSbPos function was implemented as an adjunct to the QRZAdvanceTo function
in that it returns an integer in the range of 0 to 1000 indicating the relative current position of
the record pointer in the current data file.    This value can be used to update a 0-1000
scrollbar or gauge after a search has been performed.

Visual Basic Declaration:

Declare Function QRZGetSbPos Lib "qrzdll.dll" () As Integer

C Declaration:

int FAR PASCAL QRZGetSbPos();

QRZCount

long QRZCount (More)

int * More /* Flag indicating whether the count is complete */

The QRZCount function returns the number of records which the most recent Key sequence
and Mode used in QRZSearch . would return if QRZGetNext were used.    Internally,
QRZCount repetitively calls QRZGetNext but saves time by not formatting the records.    The
database position pointer is modified as a result of this call and is left pointing at the start of
the second record which failed to match the Key sequence.    The result is returned as a long
integer.    QRZBack can be used to back the pointer up to the last record which matched.

QRZCount must be called repetitively until the More flag returns false.    The scanning
mechanism returns after each 100 records to give the user interface program a chance to
abort the operation in the event that it becomes excessively long.    The value returned by
QRZCount grows larger with each call and only the value returned when More is false is
correct.

Visual Basic Declaration:

Declare Function QRZCount Lib "qrzdll.dll" (More as Integer) As Long

C Declaration:

long FAR PASCAL QRZCount(int *More);

 QRZReformat

int QRZReformat (Format, Found)

int Format /* Return record format type (see QRZSearch) */
LPSTR Found /* Address of return buffer for result */

The QRZReformat function reformats the current record stored in memory to the indicated
Format and returns it in the buffer pointed to by Found.    No record pointer or file I/O takes
place.    The current record count remains unchanged.    QRZReformat returns the number of
bytes written to the buffer Found.

Visual Basic Declaration:

Declare Function QRZReformat Lib "qrzdll.dll" (ByVal Format as Integer, ByVal Found As String) as
Integer

C Declaration:

int FAR PASCAL QRZReformat(int Format, LPSTR Found);

 QRZField

void QRZField (Field, Found, ReturnLen)

int Field /* Return record format type (see QRZSearch) */
LPSTR Found /* Address of return buffer for result */
int *ReturnLen /* Address of Return Length variable */

The QRZField function fetches an individual record field from the current record in memory.   
The value Field is set to indicate which field is desired. The result is returned in the buffer
pointed to by Found.    No record pointer or file I/O takes place.    The current record count
remains unchanged.    The variable ReturnLen, passed as a pointer, is set to indicate the
length of the field copied to Found.

Field Values: Description:
__

CALLS Callsign
LNAME Last Name
JR Jr / Sr / II / etc.
Fname First Name
MI Middle Initial
DOB Date of Birth as    mm/dd/yy
EFDATE License Effective Date as mm/dd/yy
EXPDATE License Expiration Date as mm/dd/yy
MAIL_STR Street Address
MAIL_CITY City
MAIL_ST State
MAIL_ZIP zip code
CLASS License Class
P_CALL Previous Callsign
P_CLASS Previous Class
NUM_FIELDS Number of Fields in record
FULLNAME Full Name as    JOHN P. SMITH JR
FULLCITY Full City as      PHOENIX, AZ    85008

Visual Basic Declarations:

Declare Sub QRZField Lib "qrzdll.dll" (ByVal Field as Integer, ByVal Found As String, ReturnLen as
Integer)

Visual Basic Constants:

Const CALLS = 0
Const LNAME = 1
Const JR = 2
Const Fname = 3
Const MI = 4
Const DOB = 5
Const EFDATE = 6
Const EXPDATE = 7
Const MAIL_STR = 8
Const MAIL_CITY = 9
Const MAIL_ST = 10
Const MAIL_ZIP = 11

Const CLASS = 12
Const P_CALL = 13
Const P_CLASS = 14
Const NUM_FIELDS = 15
Const FULLNAME = 100
Const FULLCITY = 101

C Declaration:

void FAR PASCAL QRZField(int Field, LPSTR Found, int *ReturnLen);

 QRZSetFilter

void QRZSetFilter (Filter)

LPSTR Filter /* String containing single character filters */

The QRZSetFilter function is provided to tell QRZDLL which initial prefix characters to
exclude from the callsign match routines.    The filter only affects the QRZCALL search
Mode.    For example, passing the string "VG" would exclude all callsigns beginning with the
letters 'V' or 'G', and in our case, all Canadian and UK callsigns.    This filtering will be
expanded to include multicharacter prefixes in a future edition of the library.

Visual Basic Declaration:

Declare Sub QRZSetFilter Lib "qrzdll.dll" (ByVal Filtstr As String)

C Declaration:

void FAR PASCAL QRZSetFilter(LPSTR filt)

QRZGetCbInfo

int QRZGetCbInfo (Found)

LPSTR Found

The QRZGetCbInfo function returns a string with information about the currently selected
database.    This information includes the name of the file in use, the size in bytes and the
revision ID.

QRZGetCbInfo returns the number of bytes written to Found.

Visual Basic Declaration:

Declare Function QRZGetCbInfo Lib "qrzdll.dll" (Found As String) as Integer

C Declaration:

int FAR PASCAL QRZGetCbInfo(LPSTR Found)

QRZExit

int QRZExit ()

The QRZExit function serves to release QRZDLL by giving it an opportunity to release the open
file handles which it has borrowed from the calling application.    This will allow another application
to attach to QRZDLL before your program exits.

QRZExit returns the number of file handles which were open, which can be up to 4 in the current
implementation.

Once you QRZExit has been called, all QRZDLL internal variables are reset to zero and no other
calls to QRZDLL may be made until another QRZInit call is made.

It is recommended that you always call QRZExit just before your program ends.

Visual Basic Declaration:

Declare Function QRZExit Lib "qrzdll.dll" () as Integer

C Declaration:

int FAR PASCAL QRZExit(void)

